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Abstract Two common questions when one uses a stochastic global optimization algo-
rithm, e.g., simulated annealing, are when to stop a single run of the algorithm, and whether
to restart with a new run or terminate the entire algorithm. In this paper, we develop a stop-
ping and restarting strategy that considers tradeoffs between the computational effort and the
probability of obtaining the global optimum. The analysis is based on a stochastic process
called Hesitant Adaptive Search with Power-Law Improvement Distribution (HASPLID).
HASPLID models the behavior of stochastic optimization algorithms, and motivates an
implementable framework, Dynamic Multistart Sequential Search (DMSS). We demonstrate
here the practicality of DMSS by using it to govern the application of a simple local search
heuristic on three test problems from the global optimization literature.

Keywords Stopping criteria · Sequential search · Pure adaptive search

1 Introduction

Simulated annealing (SA) and other stochastic global optimization algorithms are being
applied to a wide variety of problems. Yet a common question is when to terminate the algo-
rithms. While SA has been shown to converge to global optima in probability [8,11,14,15], in

Z. B. Zabinsky
Industrial Engineering, University of Washington, Seattle, WA 98195-2650, USA
e-mail: zelda@u.washington.edu

D. Bulger (B)
Department of Statistics, Macquarie University, Sydney, NSW 2109, Australia
e-mail: dbulger@efs.mq.edu.au

C. Khompatraporn
Department of Production Engineering, King Mongkut’s University of Technology Thonburi,
126 Pracha-utit Rd., Thungkru, Bangkok 10140, Thailand
e-mail: ckhomp@gmail.com

123



274 J Glob Optim (2010) 46:273–286

practice the algorithm often appears to get “trapped” at a suboptimal point, i.e., the algorithm
cannot find a better solution after a large number of iterations.

A common practice when a stochastic optimization algorithm is trapped is to restart the
algorithm with a different starting point (often drawn from a uniform distribution). Vari-
ous studies show that stochastic optimization algorithms seem to benefit from restarts. For
instance, Theodosopoulos [19] performed a study on algorithmic restart. He concluded that
a nonzero level of randomness enhanced performance robustness of stochastic global opti-
mization algorithms in an unknown “rugged” objective function terrain. Glidewell et al. [10]
applied SA to a medical problem and reported that restarting increased the likelihood of
converging to a global optimum. Treadgold and Gedeon [18] combined SA with a gradient
descent method and found that restarting enhanced the overall performance of the algorithm.
Likewise, Li and Lim [13] embedded SA in a Tabu search with restarts to solve a set of
pickup and delivery problems. Their algorithm outperformed other algorithms for that par-
ticular problem set. Atkinson [3] designed an experiment to investigate numerically the effect
of multiple short runs of SA. He found that the algorithm’s performance was improved when
a single run was stopped and restarted at a fifth to a quarter of the total available number of
function evaluations for potentially long searches. These studies are, however, empirical in
nature.

Some theoretical results on stopping criteria for multi-start algorithms are summarized
in Boender and Romeijn [6]. Stopping strategies based on the probability of obtaining the
global optimum are discussed in [4,5,16,25]. Zielinski [25] developed a stopping rule for a
multinomial distribution whose cells correspond to the local optima of the objective function,
and this was improved upon by Boender and Rinnooy Kan [5], who used the generalized
multinomial distribution and computed the posterior distribution of the number of local
optima based on estimates of regions of attraction. These methods use clustering methods to
decide whether to initiate a local search from a possible starting point. The local search meth-
ods are assumed to find a local optimum in the region of attraction. However, it is difficult
to estimate the extent of regions of attraction without further information about the objective
function. These methods also assume the cost of each restart to be constant, whereas run
lengths differ in practice. Therefore, there remains a need for a theoretical development that
considers computational tradeoffs for sequentially dependent search with restarts, such as
simulated annealing with restarts.

From a statistical point of view, an algorithm should be terminated once the estimated
global solution has a high probability of being close to the global optimum. From a com-
putational point of view, the algorithm should be terminated when the gain from further
execution of the algorithm is not worth the computational effort of continuing. In the context
of a multi-start algorithm, we want to stop a single run when it appears to be trapped in a local
optimum and little or no improvement has been detected in a reasonable amount of time. The
decision whether to restart another run or terminate the complete algorithm should consider
the overall performance, and the chance that the local optimum is the global optimum. Our
approach to developing a stopping and restarting criterion considers tradeoffs between the
computational effort and the probability of obtaining a solution close to the global optimum.
An initial stopping and restarting criterion was developed using Improving Hit-and-Run [12]
and numerical success was demonstrated on fractional programs [9].

In this paper, we develop a theoretical approach to identify the length of a single run
and the number of restarts of a stochastic algorithm for global optimization to achieve a
high probability of getting close to the optimal solution while keeping computational effort
minimal. In order to estimate the probability of getting close to the optimum, we model
the actual algorithm with a stochastic process that we term Hesitant Adaptive Search with
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Power-Law Improvement Distribution (HASPLID), which generalizes Pure Adaptive Search
(PAS) [22,23] and is an instance of Hesitant Adaptive Search [7,21,22]. The form of HASP-
LID is chosen because it is tractable to analyze and captures both the probability of improve-
ment and the amount of improvement in two parameters that can be estimated. Even though
the modeling takes no account of the specific surface of the objective function f , the two
parameters representing the probability as well as amount of improvement observed by the
algorithm behavior give an implicit account of the interaction between the heuristic algorithm
and the objective function.

Our performance analysis of HASPLID is on a class of Lipschitz optimization problems,
and we parameterize the expected computational effort and probability of success through
the length of each single run and the number of restarts. We use the output from the stochastic
algorithm to dynamically estimate the parameters of HASPLID, enabling us to model the
behavior of the algorithm with HASPLID. The performance analysis leads to a stopping and
restarting strategy for stochastic sequential optimization algorithms.

To apply this theoretical analysis, we assume that we already have an optimization heuris-
tic, and seek stopping and restarting criteria to govern its application. We model the record
values (improving points) of the heuristic as records of HASPLID or, equivalently, as iterates
of PAS. In fact, if each of the candidate points of an algorithm is truly drawn from a Boltzmann
distribution, then this sampling will theoretically outperform PAS [17], and the results in this
paper still hold. We develop Dynamic Multistart Sequential Search (DMSS), which is easy to
implement, based on the theoretical analysis of HASPLID. We present numerical results for
DMSS with a simple elitist random walk as the stochastic sequential search on a set of test
problems. A numerical comparison with the same optimization heuristic without the DMSS
framework demonstrates the effectiveness of our stopping and restarting strategy.

The remainder of the paper is organized as follows. Notation and assumptions surround-
ing the optimization problem are specified in Sect. 2. Sections 3 and 4 describe the idealized
HASPLID model of the heuristic’s range behavior, that is, of the random sequence of objec-
tive function values sampled by the heuristic. Section 5 presents a framework for using the
idealized model to gauge the heuristic’s performance and to decide when to restart and when
to terminate. Section 6 reports promising numerical results of the DMSS framework on test
functions in various dimensions.

2 Optimization problem

The optimization problem considered here is to minimize

f : S→ R,

where (S,S, µ) is a probability space (typically a manifold). We make frequent use of the
range distribution

ρ(T ) = µ( f −1(T ))

for T ⊆ R and its cumulative distribution function (CDF)

p(y) = µ( f −1((−∞, y])).
Throughout, we assume the range distribution to be continuous, that is, we assume that

ρ({y}) = µ({x : f (x) = y}) = 0
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for all y. This is frequently true for continuous optimization problems and, more widely, may
be a reasonable approximation.

Of course, this means that the set of globally optimal points has measure zero. For this
reason, we do not expect to be able to sample from the global optima exactly. Rather, we
will nominate a proportion ε ∈ (0, 1) and aim to sample from the optimal ε-quantile of the
domain, that is, the target region will be

{x : p( f (x)) ≤ ε} = {x : µ({x ′ : f (x ′) ≤ f (x)}) ≤ ε}.

3 Hesitant adaptive search with power-law improvement distribution

In this section, we develop a parametrized model of the range behavior of an optimiza-
tion algorithm, called Hesitant Adaptive Search with Power-Law Improvement Distribution
(HASPLID), to be used in Sect. 5 in formulating criteria for stopping a single run and deter-
mining whether to restart another run or terminate the whole algorithm. The model depends
on the range distribution ρ and on two real parameters: the improvement probability param-
eter α ∈ [0, 1], controlling the difficulty of finding improvements, and the improvement
quality parameter λ ∈ R, controlling the distribution of the quality of improvements found.

The parameter λ is used to define a power-law transformation ρ(λ) of the range distribution
ρ, given by

ρ(λ)(T ) =
∫

z∈T

d(p(z))λ = λ
∫

z∈T

(p(z))λ−1 dp(z).

The relationship between the CDF p(λ) of ρ(λ) and the CDF p of ρ is

p(λ)(y) = (p(y))λ.
The normalized restriction of ρ(λ) to the left half-line (−∞, y] (that is, the distribution of
the objective function value Y , conditioned on Y ≤ y) is given by

ρ(λ)y (T ) = λ(p(y))−λ
∫

z∈T∩(−∞,y]
(p(z))λ−1 dp(z),

with CDF

p(λ)y1
(y2) =

(
p(y2)

p(y1)

)λ

for y2 < y1.
For convenience and clarity, we specify the parameterized stochastic process Hesitant

Adaptive Search with Power-Law Improvement Distribution, HASPLID(α, λ; ρ), using the
pseudocode below.

HASPLID(α, λ; ρ)
sample Y0 according to ρ(λ)

for k = 1, 2, . . .
with probability (p(Yk−1))

α

sample Yk according to ρ(λ)Yk−1
otherwise

set Yk = Yk−1
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4 Behavior of HASPLID

This section develops the theory and performance analysis of HASPLID. Our first three
propositions regard the quality of the records produced by the HASPLID model. The last
three propositions describe the behavior of HASPLID in terms of a ratio of the parameters
α and λ. For a multi-start random search algorithm, e.g., simulated annealing, we estimate
the parameters α and λ from observed record values within a single run. If non-improving
points within a run (of simulated annealing for example) are accepted, HASPLID models
this as hesitation. The final equations in this section are used in the DMSS framework to
dynamically estimate the parameters. Then we use HASPLID with the estimated parameters
to determine the probability of achieving the target region for the specified number of runs
and associated lengths. If this probability is sufficiently small, we terminate the algorithm,
otherwise we restart another run.

Proposition 1 The iterates (Yk) of HASPLID(α, λ; ρ) are stochastically equivalent to the
iterates (Ỹk) of HASPLID(α/λ, 1; ρ(λ)).

Proof Both sequences are Markov chains, so it suffices to equate their initial distributions
and transition kernels. The CDFs of Y0 and Ỹ0 are both given by p(λ)(y) = (p(y))λ. Also,
for k ∈ N,

P[Ỹk ≤ w|Ỹk−1 = y] = P[Ỹk ≤ w|Ỹk−1 = y and Ỹk < Ỹk−1]P[Ỹk < Ỹk−1|Ỹk−1 = y]
= (p(λ))(1)y (w)× (p(λ)(y))α/λ
= (p(λ)(w)/p(λ)(y))× (p(y))α
= p(λ)y (w)× (p(y))α
= P[Yk ≤ w|Yk−1 = y and Yk < Yk−1]P[Yk < Yk−1|Yk−1 = y]
= P[Yk ≤ w|Yk−1 = y]

whenever w < y (and both probabilities clearly equal 1 when w ≥ y). 	


Proposition 2 Let N (y) denote the number of records obtained by HASPLID (α, λ; ρ) before
obtaining a value of y or better. Then N (y) is Poisson distributed with mean −λ ln p(y).

Proof By Proposition 1, N (y) is equivalent to the number of records obtained by HASPLID
(α/λ, 1; ρ(λ)) before obtaining a value of y or better. However, HASPLID(α/λ, 1; ρ(λ)) is
an instance of hesitant adaptive search (HAS) [7,21,22] on the range distribution ρ(λ). The
records of HAS are stochastically equivalent to the records of PAS [21, Lemma 1] and, in
particular, the number of records exceeding y is Poisson distributed, with mean equal to

− ln(ρ(λ)((−∞, y])) = − ln((p(y))λ) = −λ ln p(y).

	


Proposition 2 provides the distribution characterizing the number of HASPLID records,
which depends on λ and ρ. The parameter α describes the hesitation of HASPLID and so is
not needed in Proposition 2. Proposition 3 further characterizes HASPLID with an expression
for the probability that the j th record value has a value greater than y.

Let Y( j) denote the j th record value of HASPLID(α, λ; ρ).

123



278 J Glob Optim (2010) 46:273–286

Proposition 3 The probability that Y( j) > y is given by

P[Y( j) > y] = 1− (p(y))λ
j−1∑
s=0

(−λ ln p(y))s/s!

or adapting the notation for an incomplete gamma function from [1, 6.5.1, 6.5.13], we have
P[Y( j) > y] = G( j,−λ ln p(y)) where G(n, x) = 1− e−x ∑n−1

s=0 xs/s!.

Proof Since the sequence of records is decreasing, the j th record Y( j) > y if and only if
N (y), the number of records exceeding y, is j or greater, i.e., P[Y( j) > y] = P[N (y) ≥ j].
By Proposition 2, N (y) is Poisson distributed with mean −λ ln p(y), hence

P[N (y) ≤ j − 1] = (p(y))λ
j−1∑
s=0

(−λ ln p(y))s/s!

and thus P[N (y) ≥ j] = 1 − (p(y))λ ∑ j−1
s=0 (−λ ln p(y))s/s! which by [1, 6.5.13] equals

G( j,−λ ln p(y)). 	


The remaining results in this section relate to parameter estimation for the HASPLID
model, and using the probability expressions to determine a termination criterion.

For positive integers k and j with j ≤ k and real y, let U j,k(y) denote the event that there
are exactly j records in the first k iterates Y0, Y1, . . . , Yk−1 of HASPLID(α, λ; ρ) with the
final record value less than or equal to y. Note that Y(1) = Y0 because the initial sample point
is considered the first record.

Proposition 4 The probability of U j,k(y) is given by

� j,k(y) = λ j−1|s(k, j)|
α j−1(k − 1)!

(p(y))λ∫

t=0

(1− tα/λ)k−1 dt (1)

where s(k, j) is a Stirling number of the first kind [1, 24.1.3].

Proof The proof proceeds by induction on k. Consider k = 1. The first iterate Y0 is the first
record, Y(1) = Y0, so for k = 1 and j = 1 the above expression reduces to�1,1(y) = (p(y))λ,
which is indeed the CDF of Y0.

Now suppose that (1) holds for a given positive integer k, for all j ∈ {1, . . . , k}. Fix
j ∈ {1, . . . , k+ 1} and y ∈ R. The event U j,k+1(y) can happen in three ways: the j th record
may occur within the first k iterates and fall below y, with the (k + 1)th iterate failing to
produce the ( j + 1)th record; the j th record may occur on the (k + 1)th iterate, with the
( j − 1)th record already falling below y; the j th record may occur on the (k + 1)th iterate
and fall below y, with the ( j − 1)th record exceeding y. Thus � j,k+1(y) can be written

y∫

z=−∞
(1− (p(z))α) d� j,k(z)+

y∫

z=−∞
(p(z))α d� j−1,k(z)+

∞∫

z=y

(p(z))α
(

p(y)

p(z)

)λ
d� j−1,k(z).
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With the substitution w = (p(z))λ, this becomes

� j,k+1(y) = λ j−1|s(k, j)|
α j−1(k − 1)!

(p(y))λ∫

w=0

(1− wα/λ)k dw

+ λ
j−2|s(k, j − 1)|
α j−2(k − 1)!

⎛
⎜⎝
(p(y))λ∫

w=0

wα/λ(1− wα/λ)k−1 dw

+ (p(y))λ
1∫

w=(p(y))λ
wα/λ−1(1− wα/λ)k−1 dw

⎞
⎟⎠

= λ j−1|s(k, j)|
α j−1(k − 1)!

(p(y))λ∫

w=0

(1− wα/λ)k dw

+ λ
j−2|s(k, j − 1)|
α j−2(k − 1)!

⎛
⎜⎝−λ

kα

(p(y))λ∫

w=0

w d((1− wα/λ)k)

− λ(p(y))
λ

αk

[
(1− wα/λ)k

]1

w=(p(y))λ

⎞
⎟⎠

= λ j−1|s(k, j)|
α j−1(k − 1)!

(p(y))λ∫

w=0

(1− wα/λ)k dw

+ λ
j−2|s(k, j − 1)|
α j−2(k − 1)!

⎛
⎜⎝−λ
αk

[
w(1− wα/λ)k

](p(y))λ
w=0

+ λ

αk

(p(y))λ∫

w=0

(1− wα/λ)k dw + λ(p(y))
λ

αk
(1− (p(y))α)k

⎞
⎟⎠

= λ j−1

α j−1k! (k|s(k, j)| + |s(k, j − 1)|)
(p(y))λ∫

w=0

(1− wα/λ)k dw

= λ j−1|s(k + 1, j)|
α j−1k!

(p(y))λ∫

w=0

(1− wα/λ)k dw.

	

Proposition 5 The probability of observing j records in the first k iterates of HASPLID
(α, λ; ρ) is

(λ/α) j−1|s(k, j)|�(1+ λ/α)
�(k + λ/α) .
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Proof The desired probability is limy→∞ P[U j,k(y)], which by Proposition 4 equals

λ j−1|s(k, j)|
α j−1(k − 1)!

1∫

t=0

(1− tα/λ)k−1 dt.

With the substitution s = tα/λ and [1, 6.2.1–2] we can rewrite this as

λ j−1|s(k, j)|
α j−1(k − 1)! ×

λ

α
× �(k)�(λ/α)
�(k + λ/α)

which simplifies to the expression required. 	


Notice that the probability expression in Proposition 5 depends only on the ratio λ/α and
not on ρ. This makes it practical to use because we can observe the records and estimate the
ratio λ/α, but the ρ distribution is impractical to estimate.

Our last result is not required for the method presented in the next section, but may be
useful for similar methods of this type.

Proposition 6 The expected number of records found by HASPLID(α, λ; ρ) in the first k
iterates is

λ

α

(
ψ

(
k + λ

α

)
− ψ

(
λ

α

))
(2)

where ψ is the digamma function [1, 6.3.1].

Proof A little manipulation of [1, 24.1.3.B] gives

�(x + k)

�(x)
=

k∑
j=0

|s(k, j)|x j ,

whence

k∑
j=1

j |s(k, j)|x j = x
d

dx

(
�(x + k)

�(x)

)
= x

�(x + k)

�(x)
(ψ(x + k)− ψ(x)).

Now by Proposition 5, we can write the expected number of records in the first k iterates as

k∑
j=1

jλ j−1|s(k, j)|�(1+ λ/α)
α j−1�(k + λ/α) = α�(1+ λ/α)

λ�(k + λ/α) ×
λ�(λ/α + k)

α�(λ/α)
(ψ(λ/α + k)− ψ(λ/α))

which simplifies to (2). 	


Now suppose that R finite independent runs of HASPLID(α, λ; ρ) are observed, where
α and λ are unknown. Suppose that the r th run is of length kr and obtains jr records. From
Proposition 5, the log-likelihood depends on α and λ only via their ratio ζ = λ/α, being

R∑
r=1

(ln |s(kr , jr )| + ( jr − 1) ln(ζ )+ ln�(1+ ζ )− ln�(kr + ζ )).
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A maximum likelihood estimate for ζ can be obtained by setting the derivative of the log-
likelihood to zero (noting that d(ln�(ζ ))/dζ = ψ(ζ )):

R∑
r=1

( jr − 1)+ ζ
(

Rψ (1+ ζ )−
R∑

r=1

ψ (kr + ζ )
)
= 0. (3)

This expression decreases monotonically from the nonnegative value
∑R

r=1( jr −1) at ζ = 0
to the nonpositive value

∑R
r=1( jr − kr ) at ζ = ∞, so that locating a root presents no

computational difficulty (we used Matlab’s fzero function for convenience).
In our Dynamic Multistart Sequential Search framework, detailed in Sects. 5 and 6, we use

(3) and Proposition 3 to determine a termination criterion by modeling the performance of a
real heuristic with HASPLID(α, λ; ρ). We will assume a value of α on theoretical grounds,
and estimate ζ via (3) using our observed jr and kr values. Then Proposition 3 provides an
expression for the probability of never sampling the ε-quantile target region, in R independent
HASPLID runs, with numbers j1, . . . , jR of records obtained. We denote this probability as
pFAIL and state the result in the following proposition.

Proposition 7 The probability that R independent runs of HASPLID(α, λ; ρ), with j1, . . . ,
jR records obtained, never sample the ε-quantile target region is

pFAIL =
R∏

r=1

G( jr ,−αζ ln ε). (4)

Hence, (4) is used to determine our termination criterion on the number of independent runs.

5 Dynamic multistart sequential search

This section presents a framework for determining stopping and restarting criteria for heu-
ristic stochastic global optimization methods. The idea is to fit a HASPLID model to the
sampled objective function values by estimating the parameters α and λ, and then to use this
model to appraise the progress of the heuristic method.

The DMSS framework (pseudocode in Fig. 1 with notation described in Fig. 2) requires
three parameters: ε represents the target proportion of the domain, e.g., ε = 0.01 if we seek a
point in the best percentile of the domain with respect to the sampling measureµ; δ represents
the failure tolerance, i.e., we want to reach the target with probability at least 1− δ; α is the
first parameter of the HASPLID process modeling each run of the heuristic.

The framework also requires two methods of drawing random samples. A random initial
domain point will be sampled for each restart, according to a sampling measure µ. (This
instruction is denoted xRUN �µ in the pseudocode in Fig. 1. The symbol ‘ �’ is intended
as a combination of the symbols ‘←’, representing assignment, and ‘∼’, meaning ‘distrib-
uted according to.’) Also, the heuristic defines a candidate sampling measure µ[x] for each
incumbent point x . (Sampling the next candidate is denoted xCAND �µ[xRUN].)

The main loop of the DMSS framework iterates through several independent runs of the
heuristic. After each run, the value ζ (the ratio of HASPLID parameters λ/α) is reestimated,
and then the probability pFAIL of not having reached the target region yet is reestimated. When
pFAIL drops below the tolerance parameter δ, the DMSS framework terminates, outputting the
location and value of the best point found in any of the runs.
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Fig. 1 Pseudocode for the DMSS framework

Fig. 2 Description of notation for the DMSS pseudocode
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Each run of the heuristic is performed according to a given candidate sampling kernel,
denoted µ[·]. The number of records in each run is stored as well as the best point encoun-
tered. The length of each run is decided by a cost-benefit analysis, according to the rate per
evaluation at which the current run is reducing ln pFAIL. (We use this notion of algorithmic
“progress” because decreases to the logarithm of the failure probability contribute additively
across independent runs of the heuristic.) If the current “progress” rate looks poor in rela-
tion to the history of either the current run or all previous runs, then we stop the current
run.

In particular, suppose that in run r , the jr th record occurs at the kr th evaluation. At this
point, and given the current estimate of ζ , the probability that this run has not sampled the
target region is given by Proposition 3 as G( jr ,−αζ ln ε). Thus the average rate of “pro-
gress,” or reduction of ln pFAIL, per evaluation in the current run is − ln G( jr ,−αζ ln ε)/kr .
If the run continues, and the next record occurs at iteration k′, then the new average rate of
progress will be − ln G( jr + 1,−αζ ln ε)/k′. If

k′ > kr
ln (G( jr + 1,−αζ ln ε))

ln (G( jr ,−αζ ln ε))
,

then the average rate of progress is decreasing, and the run should be stopped, since it is
reasonable to suppose we might make progress more rapidly by restarting the heuristic.

The above criterion tries to ensure that each run stops once it is past its prime. However,
some runs are more productive than others, and if a run appears to be making slower pro-
gress than previous runs, then we wish to abandon it, whether or not its own slow rate of
progress has peaked. Additionally, therefore, from the second run onward, the current run is
compared with previous runs. If the current run exceeds all previous runs in length, then it
is only allowed to continue as long as its average rate of “progress” per iteration exceeds the
average rate over all previous runs.

6 Experiments

To implement DMSS, a stochastic search must be selected. For simplicity we chose a simple
elitist random walk in which, at each iteration, a candidate is chosen uniformly from the inte-
rior of an axially oriented hypercube of edge length 0.2, centered on the current point, and
accepted only if it improves on the current point. In order to evaluate DMSS, we compared
its performance against two “control” algorithms, both running the same elitist random walk
for the same number of objective function evaluations: one with the same number of restarts
as the DMSS run, but equally spaced during the computation, the other with no restarts at
all.

The experiments were performed on three test problems from the global optimization
literature: centered- and shifted-optimum versions of a sinusoidal problem [2], and the
Lennard–Jones cluster problem [20]. A few versions of each test problem were optimized,
varying in dimension; furthermore, the sinusoidal optimizations were repeated 180 times,
and the Lennard–Jones optimizations were repeated 400 times.

We have opted for ε to shrink exponentially with the problem dimension d , loosely cor-
responding to a constant error tolerance in either the range or any single decision variable.
The exponential rate and δ were chosen fairly arbitrarily. We should also point out here that,
because HASPLID only approximately models the heuristic’s behavior, the true probability
of DMSS terminating within the target ε-quantile may be substantially greater or less than
1− δ.
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Table 1 Results on centered-optimum sinusoidal test function

f : x ∈ [0, π ]d → −2.5
∏d

j=1 sin x j −
∏d

j=1 sin(5x j ), ε = (0.01)d , δ = 0.001, α = 1/d

Dim d Optimal value Mean # eval.s Mean best value found by Outperformed

DMSS Equal Single Equal Single

2 −3.5 5,826 −3.467 −3.489 −2.136 86(0.6) 164(4× 10−32)

4 −3.5 19,700 −3.152 −3.022 −1.621 107(1× 10−2) 165(4× 10−33)

8 −3.5 97,189 −2.895 −2.578 −1.444 124(4× 10−7) 152(8× 10−22)

16 −3.5 12,130 −1.989 −1.319 −1.346 154(3× 10−23) 129(6× 10−9)

The last two columns show the numbers of experiments out of 180 in which DMSS outperformed the ‘Equal’
and ‘Single’ implementations: all except one are greater than 90, and thus in DMSS’s favor. They are followed
in parentheses by two-sided p-values, each representing the probability of as great or greater a difference
between the outperformance count and the expected value 90 under the null hypothesis that DMSS is in fact
identical to the ‘Equal’ or ‘Single’ implementation

Lastly, we have set the parameter α = 1/d , that is, we have assumed the difficulty of find-
ing an improvement to be inversely proportional to the dimension of the improving region.
Asymptotically, this holds for a variety of local search methods; for instance, in Improving
Hit-and-Run [24], as the search nears the global optimum, if we assume the improving region
to shrink by uniform scaling, then for any given ray of approach to the optimum and any
given search direction, the search line’s intersection with the improving region is proportional
to the improving region’s scaling (while its intersection with the domain is approximately
constant).

The experimental results appear in Tables 1, 2, and 3. Unsurprisingly, we have found that
DMSS is generally superior to a long single run of the sequential search, at least for the
problems investigated. More worthy of note is DMSS’s tendency to outperform the multi-
start implementation of the sequential search labelled ‘Equal,’ in which the same number of
evaluations are redistributed equally across the same number of restarts. (Thus, for instance,
if DMSS terminated after 4 runs, with 186, 235, 76 and 390 evaluations in the runs, then the
total number of evaluations would be 186+ 235+ 76+ 390 = 887; and for comparison, the
‘Equal’ algorithm would execute 4 runs of the sequential search, with 222, 222, 222 and 221
function evaluations.) DMSS significantly outperforms the ‘Equal’ and ‘Single’ algorithms
and the p-values are reported in parentheses in the last two columns of Tables 1, 2, and 3.
All three search methods suffer as dimension increases, ‘Equal’ most quickly and ‘Single’
most slowly. DMSS treads a middle ground between the two, but maintains performance
superior to both in nearly every case. These numerical results indicate that DMSS has some
ability to distinguish dynamically between runs which are progressing well and runs which
are stalled.

7 Conclusion

We have introduced an instance of Hesitant Adaptive Search called Hesitant Adaptive Search
with Power-Law Improvement Distribution, which allows us to characterize separately the
frequency and the quality of improvements found by sequential search procedures. We model
the search procedures dynamically by HASPLID, leading to our adaptive criteria for search
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Table 2 Results on shifted-optimum sinusoidal test function, notated as Table 1

f : x ∈ [0, π]d → −2.5
∏d

j = 1 sin(x j − π/2)−∏d
j = 1 sin(5(x j − π/2)), ε= (0.005)d , δ= 0.001, α= 1/d

Dim d Optimal value Mean # eval.s Mean best value found by Outperformed

DMSS Equal Single Equal Single

2 −3.5 4,433 −3.454 −3.450 −1.093 85(0.5) 173(1× 10−42)

4 −3.5 35,433 −2.904 −2.944 −1.229 81(0.2) 169(2× 10−37)

8 −3.5 2,918 −2.376 −2.143 −1.303 123(1× 10−6) 154(3× 10−23)

16 −3.5 1,911 −1.174 −0.794 −1.084 144(2× 10−16) 112(1× 10−3)

Table 3 Results on Lennard–Jones cluster problem, notated as Table 1

f is the Lennard–Jones potential, ε = (0.01)d , δ = 0.001, α = 1/d

Dim d Optimal value Mean # eval.s Mean best value found by Outperformed

DMSS Equal Single Equal Single

18 −19.822 60,769 −9.864 −9.742 −7.191 214(0.2) 347(5× 10−54)

42 −56.816 59,079 −10.930 −10.776 −8.475 210(0.3) 336(1× 10−45)

90 −139.636 57,918 −12.378 −12.107 −10.093 228(6× 10−3) 320(4× 10−35)

Each optimization was performed 400 times; all of the counts in the final two columns are in DMSS’s favor.
Note that the dimension associated with the 8-, 16- and 32-atom problems is thrice the number of atoms,
minus 6 (continuous symmetries were factored out). The search space restricted the first atom to the origin,
the second to the line segment [0, 1.2] × {(0, 0)}, the third to the square [0, 1.2]2 × {0}, and all others to the
axial hypercube of edge length 4d1/3 centered on (0.6, 0.6, 0.6)

restarting and termination. This is formalized in the framework called Dynamic Multistart
Sequential Search. Numerical experiments demonstrate that the DMSS framework makes
efficient decisions about the lengths of runs of a sequential search applied to standard test
problems, and terminates appropriately.

The DMSS framework presented here ignores function values across separate runs of the
sequential search: of course, it retains the best value found in any run, and within each run
it counts the number of records achieved, but the run-termination criterion is independent
of whether the current run is finding new overall records. This independence is convenient
theoretically, but probably not optimal computationally. A modification which relates the
separate runs by their function values but retains the theoretical outlook espoused by DMSS
would be desirable. Such an approach may require future research into a parametric Bayesian
estimation of the range distribution ρ.
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